

Email to Service Request:
Automating SRs with Siebel
AI
This whitepaper provides a comprehensive overview of how Siebel AI optimizes service
request management. We examine the technology that interprets incoming emails,
generates and routes SRs to the appropriate experts, and produces detailed closure
summaries upon resolution.

October, 2025, Version [1.0]
Copyright © 2025, Oracle and/or its affiliates
Public

2 Email to Service Request: Automating SRs with Siebel AI / Version [1.0]

 Copyright © 2025, Oracle and/or its affiliates / Public

Purpose statement
This document provides a solution approach and is for informational purposes only. It is intended solely to provide
valuable insights and guidance on the subject matter while serving as a reference for stakeholders. This document
does not constitute a binding agreement or official policy.

Disclaimer
This document in any form, software or printed matter, contains proprietary information that is the exclusive
property of Oracle. Your access to and use of this confidential material is subject to the terms and conditions of
your Oracle software license and service agreement, which has been executed and with which you agree to comply.
This document and information contained herein may not be disclosed, copied, reproduced or distributed to
anyone outside Oracle without prior written consent of Oracle. This document is not part of your license agreement,
nor can it be incorporated into any contractual agreement with Oracle or its subsidiaries or affiliates.

This document is for informational purposes only and is intended solely to assist you in planning for the
implementation and upgrade of the solution described. It is not a commitment to deliver any material, code, or
functionality, and should not be relied upon in making purchasing decisions. The development, release, timing, and
pricing of any features or functionality described in this document remains at the sole discretion of Oracle. Due to
the nature of the product architecture, it may not be possible to safely include all features described in this
document without risking significant destabilization of the code.

3 Email to Service Request: Automating SRs with Siebel AI / Version [1.0]

 Copyright © 2025, Oracle and/or its affiliates / Public

Table of contents

Overview 4
Solution Overview 4
Use Case Deep Dive 6
Technical Diagram 7

Technical Deep Dive: Automating SRs with Siebel AI 7
Prerequisites 8
Implementation 8
Benefits 8
Conclusion 9

Call To Action 9
Appendix I: Prerequisites: Before Implementation 10

Required Configurations Checklist 10
Appendix II: Technical Implementation Guide 12

I. GenAI Email Insights Implementation (The Core Functionality) 12
II. Automated Communication and Governance 12

GenAI Email Insights Implementation – UX and PR changes 12
Get Email Insights Button – Business Service 21
Acknowledgement mail 25
Code to generate acknowledgment email is added in the business
service. 25
Closure Email 25
Traceability 25

List of figures and tables

Figure 1. Generate Email insights flow 4
Figure 2. Closure Summary Flow 5
Figure 3. Sample demo flow 6
Figure 4. Architecture Diagram 7
Table 1. Prerequisites 10
Figure 5. This is the final UI after PR changes 21

4 Email to Service Request: Automating SRs with Siebel AI / Version [1.0]

 Copyright © 2025, Oracle and/or its affiliates / Public

Overview
Siebel CRM, a comprehensive customer relationship management platform, is renowned for its robust and highly
customizable solutions for sales, marketing, and customer service. Its email handling feature, often referred to as
Siebel Email Response, is a core component that enables businesses to manage high volumes of inbound and
outbound email communications with customers. This functionality is built on a scalable architecture that includes
dedicated components for receiving, processing, and sending emails.

Managing customer emails is a persistent challenge for many companies. Important messages often go unnoticed
or receive incomplete responses, leading to delays and frustration. When a Service Request (SR) is closed, support
teams typically spend valuable time manually sorting through long email threads to compile a summary or
resolution. Yet, customers expect timely, clear updates without having to ask. The need for an intelligent, automated
solution is more pressing than ever—and that’s exactly where Siebel AI steps in.

Our new GenAI integration is designed to transform agent efficiency. Siebel Email Response users can now, without
leaving their familiar workspace, access powerful AI-powered insights, comprehensive summaries, and intelligently
drafted replies—all with just a few clicks. Critically, the AI can also generate a precise closure summary that
aggregates all Service Request (SR) activities. This feature not only saves agents valuable time but also ensures
customers receive a clear, concise overview of everything that transpired.

Solution Overview

With the new GenAI integration, working in Siebel Email Response feels smarter, faster, and more intuitive—like
having an expert assistant by your side, guiding you through every customer interaction.

Here’s what a typical GenAI-powered workflow looks like:

1. Instant Smart Summaries: As soon as a customer email or complaint arrives in Siebel, GenAI gets to work.
In moments, the email is automatically summarized—long, complex messages are distilled into bullet
points or brief highlights. Agents no longer need to scroll through multiple paragraphs hunting for key
facts or main issues; everything they need to understand the customer’s problem is presented up front.

2. Critical Details Highlighted Effortlessly: GenAI doesn’t just summarize—it identifies urgency and
important data such as product names, account numbers, or time-sensitive requests. This means agents
can quickly sense the priority of each interaction, ensuring that the most urgent complaints get the fastest
attention.

Figure 1. Generate Email insights flow

5 Email to Service Request: Automating SRs with Siebel AI / Version [1.0]

 Copyright © 2025, Oracle and/or its affiliates / Public

3. One-Click Draft Response Generation: With one click, the agent asks GenAI to draft a suggested reply.
GenAI creates a polished, empathetic, and on-topic first draft—often including helpful suggestions,
apologies, or next-step instructions as appropriate.

4. Personalization & Human Touch: The agent reviews the suggested draft, quickly making any adjustments
or adding personal touches. Since the “heavy lifting” is already done by GenAI, agents can focus on tailoring
their response, connecting authentically with the customer, and making sure every answer is accurate and
on-brand.

5. Automated Closure Summary Generation: Once a Service Request (SR) is closed, the agent can generate
a precise closure summary based on all SR activities. This summary is then used to draft a transparent,
professional closing email to the customer, ensuring clear communication and finality.

Figure 2. Closure Summary Flow

6. Seamless Integration, No Added Complexity: All of this happens inside the familiar Siebel CRM
interface—no switching between screens, no copy-paste, no waiting for external tools. The GenAI Adapter
runs natively, so agents experience speed, security, and reliability backed by Oracle Cloud.

7. Learning and Consistency: Over time, teams notice greater consistency in communication style, fewer
errors, and rising customer satisfaction—no matter who’s on shift. GenAI suggests closing loops, answering
specific questions, or providing links to relevant knowledge articles, so nothing gets missed.

6 Email to Service Request: Automating SRs with Siebel AI / Version [1.0]

 Copyright © 2025, Oracle and/or its affiliates / Public

Use Case Deep Dive

Figure 3. Sample demo flow

1. Automated Email Monitoring – Siebel is configured to automatically monitor a dedicated support email
inbox. Whenever a new email arrives, Siebel extracts the relevant content and syncs it into the system in
real-time.

2. Email Inbound Activity Creation – Each incoming email is logged as an Inbound Activity within Siebel,
providing a structured view for Customer Service Representatives (CSR Admins) to manage.

3. CSR Review & Decision Point – The CSR Admin reviews the email content and decides whether a Service
Request (SR) needs to be created based on the context and nature of the email.

4. AI-Assisted Key Information Extraction – Using Siebel AI capabilities, the CSR extracts key details from
the email, such as Product type, Urgency, and Customer Intent, ensuring that all necessary information is
captured efficiently.

5. Service Request Creation – With the extracted information, the CSR proceeds to create a Service Request
(SR), mapping the details into Siebel’s SR fields for further processing.

6. AI-Generated Acknowledgement Draft – As part of the SR creation process, Siebel AI automatically drafts
a personalised acknowledgement email. This draft is reviewed and finalized by the CSR before sending it
back to the customer, ensuring timely and professional communication.

7. Dynamic SR Assignment via Workflow Monitor Agent – Once the SR is created, Siebel’s Workflow
Monitor Agent evaluates predefined assignment rules and dynamically assigns the SR to the appropriate
Support Agent based on product expertise and workload balancing.

8. Support Agent Action & Response – Finally, the assigned Support Agent receives the SR, continues
working on the resolution, and can reply directly to the original email thread within Siebel, maintaining a
seamless communication loop.

7 Email to Service Request: Automating SRs with Siebel AI / Version [1.0]

 Copyright © 2025, Oracle and/or its affiliates / Public

Technical Diagram

Figure 4. Architecture Diagram

Technical Deep Dive: Automating SRs with Siebel AI
This section details the technical architecture and component interactions that enable the intelligent automation
of Service Requests (SRs) within the Siebel platform. The core of the system is the Siebel AI module, which
integrates with the traditional Siebel UI and backend services to process, analyze, and automate responses to
customer interactions.

Architecture Overview
The architecture is composed of three primary layers: the UI (User Interface) Layer, the Siebel Core Services Layer,
and the Siebel AI Engine.

• UI Layer: This layer represents the user and system touchpoints. It captures incoming customer
communications and displays the results of the automated processes to different user roles (Agent and
Subject Matter Expert, or SME).

• Siebel Core Services Layer: This layer comprises the foundational Siebel business logic and integration

components, including Business Services, the PR Layer (Presentation Renderer/Presenter), the
Assignment Manager, and the Closure Summary component. These components handle data
manipulation, process orchestration, and routing.

• Siebel AI Engine: The central intelligence unit responsible for natural language processing (NLP),

machine learning (ML) tasks, and generating actionable insights, summaries, and automated responses.
This framework is designed for leveraging OCI AI, third-party AI, and Generative AI Services.

8 Email to Service Request: Automating SRs with Siebel AI / Version [1.0]

 Copyright © 2025, Oracle and/or its affiliates / Public

Technical Significance
The integration pattern highlights the use of traditional Siebel business components (Business Services,
Assignment Manager) as API gateways between the legacy application logic and the modern, black-box AI engine.
This decoupling allows the Siebel AI to be a flexible, evolving entity (perhaps a microservice or cloud function)
without requiring a deep re-architecture of the core Siebel CRM platform. The reliance on the PR Layer for
delivering real-time insights demonstrates a focus on Agent Augmentation, using AI to support the human
operator rather than replacing them entirely.

Prerequisites
Please refer appendix I form more details

Implementation
Please refer appendix II form more details

Benefits
The Siebel GenAI integration is designed to move beyond simple automation, delivering tangible improvements in
agent efficiency, customer experience, and operational consistency.

o Boost Agent Productivity by Over 30%

o Faster Response Time: Agents save significant time by skipping the manual steps of reading long
emails and searching for key data. Instant Smart Summaries and Critical Detail Highlighting deliver
the core issue upfront.

o Reduced Manual Effort: The One-Click Draft Response Generation automates the composition
of the first draft, allowing agents to focus their energy on review, personalization, and complex
problem-solving, not typing out routine replies.

o Seamless, Native Workflow: Because the GenAI Adapter runs natively within Siebel, agents avoid
the time-consuming context switching, copy-pasting, and delays associated with external tools.

o Drive Consistent Quality and Customer Satisfaction

o High-Quality Communication: GenAI consistently drafts polished, empathetic, and on-topic
responses, ensuring every customer interaction is professional and on-brand, regardless of the
agent's experience level.

o Transparency and Trust: The Automated Closure Summary Generation allows agents to quickly
provide customers with a clear, accurate account of the resolution, building trust and reducing
follow-up queries.

o Zero Missed Steps: The AI helps establish Learning and Consistency by suggesting specific
answers, closing loops, or providing links to relevant knowledge articles, minimizing errors and
oversight.

o Ensure Security and Reliability

o Enterprise-Grade Security: The adapter's native integration ensures that all data processing
occurs securely within the Siebel CRM interface and is backed by the reliability and security of
Oracle Cloud.

9 Email to Service Request: Automating SRs with Siebel AI / Version [1.0]

 Copyright © 2025, Oracle and/or its affiliates / Public

o Focus on Personalization: By handling the "heavy lifting," GenAI enables the Personalization &
Human Touch. Agents can dedicate their time to tailoring the final response, fostering an authentic
connection, and ensuring absolute accuracy.

Conclusion

The reality of high-volume customer service is that agents often spend more time on low-value, repetitive tasks
than on solving complex problems and building customer relationships. The Siebel GenAI integration finally
changes this dynamic.

By embedding AI-powered summarization, drafting, and closure generation directly into the familiar Siebel
workspace, we're not just offering a new tool—we're delivering a fundamental shift in efficiency. Your team can
move beyond simply reacting to emails and instead focus on providing the personalized, high-quality interactions
that truly boost satisfaction. This integration is designed to make your agents faster, your service more
consistent, and your customers happier, all while leveraging the security and reliability of the Oracle Cloud.

For architects and developers, Appendix A – Technical Implementation Guide provides the detailed architecture,
code snippets, and configuration steps referenced throughout this business overview.

Call To Action

Ready to Achieve a 30% Boost in Agent Productivity?

Don't let email volume overwhelm your service team any longer. Take the definitive step toward smarter, AI-
powered service today.

Contact us directly at siebel_coe_grp@oracle.com to discuss your implementation.

mailto:siebel_coe_grp@oracle.com

10 Email to Service Request: Automating SRs with Siebel AI / Version [1.0]

 Copyright © 2025, Oracle and/or its affiliates / Public

Appendix I: Prerequisites: Before Implementation
Before beginning the Siebel GenAI Email Response integration, ensure that the following foundational
requirements and configurations are fully met and enabled in your environment. Meeting these criteria is
essential for successful deployment and proper functioning of the AI features.

Required Configurations Checklist

1. Assignment Manager Setup
o Verify that Assignment Manager is configured and running correctly to ensure Service Requests

are routed efficiently.
2. Email Setup

o Confirm that inbound and outbound email accounts (SMTP/POP3/IMAP) are fully configured
and tested within Siebel for reliable communication.

3. Required Component Group Activation
o Ensure all necessary Siebel Component Groups (including those supporting Communication

Management and the AI Adapter) are enabled and running.
4. Siebel Email Response Configuration

o Verify that the core Siebel Email Response functionality, including templates and basic response
generation, is operational.

5. Siebel AI Services Activation
o Confirm that the necessary licenses are in place and the external Siebel AI Services (e.g.,

connectivity to the Oracle Cloud GenAI endpoint) are configured and accessible.
6. Configuring Open UI

o Ensure the Open UI environment is correctly set up for Presentation Model (PM) and
Presentation Renderer (PR) modifications, which are required to display the new AI-powered
insights.

Table 1. Prerequisites

Category Prerequisite/Requirement Details/Notes

Siebel
Environment

Version Min 25.3 Min version for using Siebel GenAI and Open UI
services.

Siebel CRM environment (Server,
Gateway, AI, DB) installed and
configured

All core Siebel components operational

Communications Server
components enabled
(CommInboundRcvr,
CommInboundProcessor,
CommOutboundMgr)

For email monitoring, processing, and outbound mail

Siebel Assignment Manager
installed, enabled, and
configured

For automated, skills-based assignment of Service
Requests, activities, emails, etc.

Siebel administrator/system
access

Access to server config, drivers, workflows. This
includes the SSH access to VM/Machine where Siebel
is installed.

11 Email to Service Request: Automating SRs with Siebel AI / Version [1.0]

 Copyright © 2025, Oracle and/or its affiliates / Public

Network connectivity between
Siebel and mail servers
(IMAP/POP3/SMTP)

No firewalls/proxies blocking required ports

Admin access to Siebel
environment

Siebel and OS admin rights for configuration and
testing

Network connectivity to email
servers (IMAP/POP3/SMTP
ports open)

Required: 993 (IMAP), 995 (POP3), 587 (SMTP); no
firewall/proxy blocks

Office365/Email
Server

Office365/Azure AD tenant or
test email infrastructure setup

Test tenant/mailboxes for POC

Dedicated test mailbox For inbound/outbound validation

Azure AD App registration (for
OAuth2)

Client ID, Client Secret, Tenant ID, Permissions

Office365 endpoints accessible:
IMAP (993), SMTP (587), POP3
(995)

Network/firewall configuration

Email server public root
certificate (for SSL/TLS)

For use in truststore

OCI Account &
Tenancy

Valid Oracle Cloud account and
active tenancy

Sign up or use existing OCI tenancy

Generative AI Supported OCI
region

Check that your selected region offers GenAI services
(see OCI docs)

OCI Account &
Tenancy

User Access/IAM: OCI user with
required permissions

Appropriate IAM policies that permit use of GenAI
resources/compartments

Compartment where GenAI
services will be created/accessed

GenAI resources are created and managed within a
compartment

Sufficient quotas for Generative
AI services and relevant resource
types

May require a limit increase request via OCI Console

Network access to OCI endpoints If accessed from on-prem or Siebel, ensure outbound
access to OCI APIs

https://docs.oracle.com/en-us/iaas/Content/generative-ai/overview.htm#regions

12 Email to Service Request: Automating SRs with Siebel AI / Version [1.0]

 Copyright © 2025, Oracle and/or its affiliates / Public

Appendix II: Technical Implementation Guide
This section outlines the specific configuration and code changes required within the Siebel environment to
enable the GenAI-powered email response workflow.

I. GenAI Email Insights Implementation (The Core Functionality)

1. User Experience (UX) and Presentation Renderer (PR) Changes
o Details on the new applet controls, button configuration, and modifications to the Presentation

Model (PM) and Presentation Renderer (PR) files necessary to display the AI-generated
summaries and insights within the Siebel UI.

2. Business Service Integration and Data Flow (Backend Logic)
o Technical specification of the new or modified Business Service responsible for packaging the

customer data, invoking the external GenAI API, and processing the returned response
properties.

II. Automated Communication and Governance

3. Modifications to the Acknowledgement Mail Process
o Description of how the GenAI output (e.g., detected urgency or core issue keywords) is used to

enhance or select templates for the initial customer acknowledgement mail.
4. Utilizing AI-Generated Summary in the Closure Email

o Mechanism for calling the GenAI service to generate a final closure summary based on Service
Request (SR) activities and how this summary is integrated into the final customer email for
maximum transparency.

5. Traceability and Audit Logging of GenAI Activities
o Outline of the logging and storage strategy for all GenAI-related activities, including storing AI-

generated drafts and summaries within the Siebel Service Request record for auditing and
governance purposes.

GenAI Email Insights Implementation – UX and PR changes

Create a new Control and add it to the active webtemplate.

• Open Siebel Web Tools in your browser and login.
• Select Workspace or create a new one.
• Navigate to the Applet:

o Go to the Applet object.
o Search for and open the target applet.

• Add a New Control: Scroll to the Controls section and click + to add.
o Name: e.g.,EmailInsights
o Caption: Get Email Insights
o HTML Type: MiniButton

• Update Web Template:
o Open the applet layout and drag the control to the desired location on the form or list layout.

• Validate and Deliver your changes.

The PR File should help in the following ways:

• Button Styling update before Page load and adding event listener.
• When clicked on Get Insights Button Retrieve values from the active applet (e.g., email body, Sender

info).
• Use OCI GenAI to extract or infer values such as Severity, Priority, and Issue Summary.
• Pass these insights to create a new Service Request (SR) by calling Business Service.
• Finally, refresh the applet to display the generated SR number for the Email issue.

13 Email to Service Request: Automating SRs with Siebel AI / Version [1.0]

 Copyright © 2025, Oracle and/or its affiliates / Public

Prompt to Extract FCL values from Email body:

Gen AI Prompt

`You are an intelligent assistant trained to extract structured data from customer service email
body. Given an email body, identify and extract the following fields:\n1 **Product** (Fixed
Values: 'Personal Loan', 'Platinum Credit Card', 'Child Savings Account', 'Life Insurance')\n2
SR Type (Fixed Values: 'Trouble Ticket', 'Technical Problem','Request For Change', 'Request
for Information', 'Billing Problem')\n3 **Priority** (Fixed Values: '1-ASAP', '2-High', '3-
Medium', '4-Low'). Need to be resolved from urgency in the language used in email body.\n4
Severity (Need to be resolved from the severity of the issue. (Fixed Values: '1-Critical',
'2-High','3-Medium', '4-Low', '5-Question')) **\n5 **Summary** (Summary of the issue. IMPORTANT:
Should not be greater than 100 characters.)\nHere is the email:\n${mailbody}\nReturn your output
as a 100% JSON object like this:{product:, sr_type:, priority: ,summary: ,severity:} following
all fixed value rules and 100 characters limit for Summary field`

Add entry in Manifest Administration and Files:

• Type: Applet
• Usage Type: Physical Renderer
• Name: Comm Inbound Item Body Applet
• File: siebel/buttonStylePR.js
• PR File: add the PR File to ses/applicationcontainer_external/siebelwebroot/scripts/siebel

if (typeof SiebelAppFacade.buttonStylePR === "undefined") {
 SiebelJS.Namespace('SiebelAppFacade.buttonStylePR');

 define("siebel/buttonStylePR", ["siebel/phyrenderer"], function (PhyRenderer) {
 SiebelAppFacade.buttonStylePR = (function () {

 function buttonStylePR(pm) {
 console.log('buttonStylePR constructor called.');
 SiebelAppFacade.buttonStylePR.superclass.constructor.call(this, pm);
 }

 SiebelJS.Extend(buttonStylePR, SiebelAppFacade.PhysicalRenderer);

 buttonStylePR.prototype.Init = function () {
 console.log('buttonStylePR Init method called.');
 SiebelAppFacade.buttonStylePR.superclass.Init.call(this);
 };

 buttonStylePR.prototype.BindEvents = function () {
 console.log('buttonStylePR BindEvents method called.');
 SiebelAppFacade.buttonStylePR.superclass.BindEvents.call(this);

 var buttonControl = $('#s_1_1_8_0_mb');

 if (buttonControl.length) {
 console.log("Button control found, changing styles");
 var view = SiebelApp.S_App.GetActiveView();
 var appletMap = view.GetAppletMap();
 var applet = appletMap["Comm Inbound Item List Applet"];
 if (applet) {
 var bc = applet.GetBusComp();
 var ctrlMap = applet.GetControls();
 var selectedRecord = {};
 for (var ctrlName in ctrlMap) {
 if (!ctrlMap.hasOwnProperty(ctrlName)) continue;
 var ctrl = ctrlMap[ctrlName];
 var fieldName = ctrl.GetFieldName && ctrl.GetFieldName();

14 Email to Service Request: Automating SRs with Siebel AI / Version [1.0]

 Copyright © 2025, Oracle and/or its affiliates / Public

 if (fieldName) {
 try {
 selectedRecord[fieldName] = bc.GetFieldValue(fieldName);
 } catch (e) {
 selectedRecord[fieldName] = "(error)";
 }
 }
 }
 const isValid =
 selectedRecord["Type"] === "Email - Inbound" &&
 selectedRecord["Status"] === "Not Started" &&
 (!selectedRecord["SR Number"] || selectedRecord["SR Number"].trim() ===
"");
 if (!isValid) {
 const emailInsightsBtn = document.getElementById("s_1_1_8_0_mb");
 if (emailInsightsBtn) {
 emailInsightsBtn.style.display = "none";
 }
 }
 else {
 const emailInsightsBtn = document.getElementById("s_1_1_8_0_mb");
 if (emailInsightsBtn) {
 emailInsightsBtn.style.display = "inline-block";
 }
 }

 }

 var btn = buttonControl[0];

 // Enforce base styling
 btn.style.setProperty("border", "1px solid #888", "important");
 btn.style.setProperty("border-radius", "4px", "important");
 btn.style.setProperty("padding", "6px 12px", "important");
 btn.style.setProperty("font-size", "14px", "important");
 btn.style.setProperty("background-color", "transparent", "important");

 btn.style.setProperty("color", "black", "important");
 btn.style.setProperty("cursor", "pointer", "important");
 btn.style.setProperty("text-decoration", "none", "important");

 // Inject overlay hover effect immediately
 btn.addEventListener("mouseenter", function () {
 btn.style.setProperty("background-color", "rgba(0, 0, 0, 0.05)", "important");
 });

 btn.addEventListener("mouseleave", function () {
 btn.style.setProperty("background-color", "transparent", "important");
 });

 // Attach click listener
 buttonControl.off("click").on("click", function () {
 console.log("Button clicked");
 try {
 const divId = "CommunicationPanelContainer";
 const targetDiv = document.getElementById(divId);

 const existingDrawer = targetDiv.querySelector("oj-c-drawer-popup");
 if (existingDrawer) targetDiv.removeChild(existingDrawer);

 const drawer = document.createElement("oj-c-drawer-popup");
 drawer.setAttribute("edge", "end");
 drawer.setAttribute("opened", "false");
 drawer.setAttribute("aria-labelledby", "drawerTitle");
 drawer.style.display = "flex";
 drawer.style.flexDirection = "column";

15 Email to Service Request: Automating SRs with Siebel AI / Version [1.0]

 Copyright © 2025, Oracle and/or its affiliates / Public

 drawer.style.width = "650px";

 const header = document.createElement("div");
 header.style.display = "flex";
 header.style.justifyContent = "space-between";
 header.style.alignItems = "center";
 header.style.padding = "16px";
 header.style.borderBottom = "1px solid #ddd";

 const title = document.createElement("h5");
 title.id = "drawerTitle";
 title.textContent = "Create Service Request";
 title.style.margin = "0";
 title.style.marginLeft = "16px";
 title.style.fontWeight = "600";

 const closeBtn = document.createElement("oj-c-button");
 closeBtn.setAttribute("display", "icons");
 closeBtn.setAttribute("chroming", "borderless");
 closeBtn.setAttribute("label", "Close");
 const icon = document.createElement("span");
 icon.setAttribute("slot", "startIcon");
 icon.className = "oj-ux-ico-close";
 closeBtn.appendChild(icon);
 closeBtn.addEventListener("ojAction", () => {
 drawer.setAttribute("opened", "false");
 });

 header.appendChild(title);
 header.appendChild(closeBtn);

 const content = document.createElement("div");
 content.style.padding = "32px";
 content.style.display = "flex";
 content.style.justifyContent = "center";
 content.style.alignItems = "center";
 content.style.minHeight = "680px";
 content.style.width = "530px";
 content.style.flexDirection = "column"; // stack items vertically

 content.style.minWidth = "350px";
 const loader = document.createElement("oj-progress-circle");
 loader.setAttribute("size", "md");
 loader.setAttribute("value", "-1");
 content.appendChild(loader);

 const loadingText = document.createElement("div");
 loadingText.textContent = "Fetching insights..";
 loadingText.style.marginTop = "16px";
 loadingText.style.fontSize = "14px";
 loadingText.style.color = "#666";
 content.appendChild(loadingText);

 const footer = document.createElement("div");
 footer.style.display = "flex";
 footer.style.justifyContent = "flex-start";
 footer.style.paddingLeft = "52px"; // add left padding to shift
right

 footer.style.gap = "12px";
 //footer.style.padding = "22px";
 footer.style.paddingTop = "16px"; // or less
 footer.style.paddingBottom = "16px";
 footer.style.marginTop = "auto"; // push it to bottom if wrapper is flex-
column

 footer.style.borderTop = "1px solid #e0e0e0";

16 Email to Service Request: Automating SRs with Siebel AI / Version [1.0]

 Copyright © 2025, Oracle and/or its affiliates / Public

 const createBtn = document.createElement("oj-c-button");
 createBtn.setAttribute("label", "Create SR");
 createBtn.setAttribute("chroming", "callToAction");
 createBtn.addEventListener("ojAction", () => {
 var inputPS = theApplication().NewPropertySet();
 var OutputPS = theApplication().NewPropertySet();

 // Utility function to get input value by label
 function getInputValue(labelHint) {
 const label = Array.from(document.querySelectorAll('label')).find(l
=> l.textContent.trim() === labelHint);
 if (label) {
 const input =
document.getElementById(label.getAttribute('for'));
 return input?.value || '';
 }
 return '';
 }

 // Extract values templateSelect
 var email = getInputValue("Contact Email");
 var priority = document.querySelector("#prioritySelect\\|input")?.value
|| '';
 var severity = document.querySelector("#severitySelect\\|input")?.value
|| '';
 var product = getInputValue("Product");
 var summary = getInputValue("Summary");
 var lname = getInputValue("Last Name");
 var fname = getInputValue("First Name");
 var srtype = getInputValue("Issue Type");
 const checkboxInput = document.querySelector('oj-c-checkbox
input[type="checkbox"]');
 const isChecked = checkboxInput?.checked ? "Y" : "N";

 const selectTemp = document.getElementById("templateSelect");

 const selectedValue = selectTemp.value; // This will be the "value"
from the selected option

 var templatetext = selectedValue
 console.log(templatetext)
 console.log(severity)
 const view = SiebelApp.S_App.GetActiveView();
 let appletMap = view.GetAppletMap();
 let applet = appletMap["Comm Inbound Item List Applet"];
 let bc = applet.GetBusComp();
 var actionid = bc.GetFieldValue("Id");

 // Set values in Property Set
 inputPS.SetProperty("email", email);
 inputPS.SetProperty("priority", priority);
 inputPS.SetProperty("severity", severity);
 inputPS.SetProperty("product", product);
 inputPS.SetProperty("abstract", summary);
 inputPS.SetProperty("lname", lname);
 inputPS.SetProperty("fname", fname);
 inputPS.SetProperty("srtype", srtype);
 inputPS.SetProperty("actionId", actionid);
 inputPS.SetProperty("templatetext", templatetext);
 inputPS.SetProperty("ackmail", isChecked);
 console.log(actionid)

 // Call Business Service
 var bswm2 = theApplication().GetService("AlliedBankBS");
 OutputPS = bswm2.InvokeMethod("CreateSR", inputPS);
 var Retcode = OutputPS.GetProperty("SRId");

17 Email to Service Request: Automating SRs with Siebel AI / Version [1.0]

 Copyright © 2025, Oracle and/or its affiliates / Public

 console.log("Executed " + Retcode);
 var applet123 = SiebelApp.S_App.GetActiveView().GetAppletMap();
 var appletname123 = Object.keys(applet123)[0];
 SiebelApp.S_App.GetActiveView().SetActiveAppletByName(appletname123);
 var actapplet123 = SiebelApp.S_App.GetActiveView().GetActiveApplet();
 actapplet123.InvokeMethod("RefreshRecord");
 console.log("Create SR clicked");
 drawer.setAttribute("opened", "false");
 const divId = "CommunicationPanelContainer";
 const targetDiv = document.getElementById(divId);
 const existingDrawer = targetDiv.querySelector("oj-c-drawer-popup");
 });
 footer.appendChild(createBtn);

 const cancelBtn = document.createElement("oj-c-button");
 cancelBtn.setAttribute("label", "Close");
 cancelBtn.setAttribute("chroming", "outlined");
 cancelBtn.addEventListener("ojAction", () => {
 drawer.setAttribute("opened", "false");
 });

 footer.appendChild(cancelBtn);

 drawer.appendChild(header);
 drawer.appendChild(content);
 drawer.appendChild(footer);
 targetDiv.appendChild(drawer);

 // Open drawer after upgrade
 customElements.whenDefined("oj-c-drawer-popup").then(() => {
 requestAnimationFrame(() => {
 drawer.setAttribute("opened", "true");
 });
 });

 const requireFunc = window.require || window.parent.require;
 requireFunc(
 [
 "oj-c/input-text",
 "oj-c/text-area",
 "ojs/ojformlayout",
 "ojs/ojselectsingle",
 "ojs/ojarraydataprovider",
 "oj-c/checkbox"
],
 function (inputText, textArea, formLayout, selectSingle,
ArrayDataProvider, checkbox) {
 // Run AI logic in a truly async function
 (async () => {
 try {
 await new Promise(resolve => setTimeout(resolve, 100)); //
allow loader to paint
 const priorities = [
 { value: "1-ASAP", label: "1-ASAP" },
 { value: "2-High", label: "2-High" },
 { value: "3-Medium", label: "3-Medium" },
 { value: "4-Low", label: "4-Low" }
];
 const priorityDP = new ArrayDataProvider(priorities, {
keyAttributes: "value" });

 const severities = [
 { value: "1-Critical", label: "1-Critical" },
 { value: "2-High", label: "2-High" },
 { value: "3-Medium", label: "3-Medium" },
 { value: "4-Low", label: "4-Low" },
 { value: "5-Question", label: "5-Question" }
];

18 Email to Service Request: Automating SRs with Siebel AI / Version [1.0]

 Copyright © 2025, Oracle and/or its affiliates / Public

 const severityDP = new ArrayDataProvider(severities, {
keyAttributes: "value" });

 const view = SiebelApp.S_App.GetActiveView();
 let appletMap = view.GetAppletMap();
 let applet = appletMap["Comm Inbound Item List Applet"];
 let bc = applet.GetBusComp();
 let ctrlMap = applet.GetControls();
 let selectedRecord = {};

 for (let ctrlName in ctrlMap) {
 if (!ctrlMap.hasOwnProperty(ctrlName)) continue;
 let ctrl = ctrlMap[ctrlName];
 let fieldName = ctrl.GetFieldName &&
ctrl.GetFieldName();
 if (fieldName) {
 try {
 selectedRecord[fieldName] =
bc.GetFieldValue(fieldName);
 } catch (e) {
 selectedRecord[fieldName] = "(error)";
 }
 }
 }

 let first = selectedRecord["Contact First Name"];
 let last = selectedRecord["Contact Last Name"];
 let email = selectedRecord["Email Sender Address"];

 applet = appletMap["Comm Inbound Item Body Applet"];
 bc = applet.GetBusComp();
 ctrlMap = applet.GetControls();
 selectedRecord = {};

 for (let ctrlName in ctrlMap) {
 if (!ctrlMap.hasOwnProperty(ctrlName)) continue;
 let ctrl = ctrlMap[ctrlName];
 let fieldName = ctrl.GetFieldName &&
ctrl.GetFieldName();
 if (fieldName) {
 try {
 selectedRecord[fieldName] =
bc.GetFieldValue(fieldName);
 } catch (e) {
 selectedRecord[fieldName] = "(error)";
 }
 }
 }

 let mailbody = selectedRecord["Display Email Body"];

 let promptbody = `You are an intelligent assistant trained
to extract structured data from customer service email body. Given an email body, identify and
extract the following fields:\n1 **Product** (Fixed Values: 'Personal Loan', 'Platinum Credit
Card', 'Child Savings Account', 'Life Insurance')\n2 **SR Type** (Fixed Values: 'Trouble
Ticket', 'Technical Problem','Request For Change', 'Request for Information', 'Billing
Problem')\n3 **Priority** (Fixed Values: '1-ASAP', '2-High', '3-Medium', '4-Low'). Need to be
resolved from urgency in the language used in email body.\n4 **Severity** (Need to be resolved
from the severity of the issue. (Fixed Values: '1-Critical', '2-High','3-Medium', '4-Low', '5-
Question')) **\n5 **Summary** (Summary of the issue. IMPORTANT: Should not be greater than 100
characters.)\nHere is the email:\n${mailbody}\nReturn your output as a 100% JSON object like
this:{product:, sr_type:, priority: ,summary: ,severity:} following all fixed value rules and
100 characters limit for Summary field`;

 let inputPS = theApplication().NewPropertySet();
 let OutputPS = theApplication().NewPropertySet();
 inputPS.SetProperty("Prompt", promptbody);

19 Email to Service Request: Automating SRs with Siebel AI / Version [1.0]

 Copyright © 2025, Oracle and/or its affiliates / Public

 inputPS.SetProperty("ModelName", "COHERE");
 let bswm2 = theApplication().GetService("AlliedBankBS");
 let Output = bswm2.InvokeMethod("InvokeAI", inputPS);
 let Retcode = Output.GetProperty("Output");
 let jsonObject = JSON.parse(Retcode);
 jsonObject["first_name"] = first;
 jsonObject["last_name"] = last;
 jsonObject["email"] = email;

 //await new Promise(resolve => setTimeout(resolve, 100)); //
allow loader to paint
 console.log("going to call rest");
 const url =
"https://phoenix269458.appsdev.fusionappsdphx1.oraclevcn.com:16691/siebel/v1.0/data/Comm%20Packa
ge/Comm%20Package?searchspec=%5BMedia%20Type%5D%3D'Email'";
 const username = <username_here>;
 const password = <password_here>;

 const response = await fetch(url, {
 method: "GET",
 headers: {
 "Authorization": "Basic " + btoa(username + ":" +
password),
 "Content-Type": "application/json",
 "Accept": "application/json"
 }
 });

 if (!response.ok) {
 throw new Error(`HTTP ${response.status} -
${response.statusText}`);
 }

 const apiData = await response.json();
 console.log(apiData)

 const items = apiData.items || [];

 const templates = items.map(item => ({
 value: item["Template Text"],
 label: item["Name"]
 }));

 const templateDP = new ArrayDataProvider(templates, {
keyAttributes: "value" });
 console.log("template is");
 console.log(apiData.items[0]["Template Text"]);

 content.innerHTML = `
 <oj-form-layout max-columns="1" label-edge="top" style="max-width:
520px; width: 100%;">
 <oj-c-input-text label-hint="Intent" value="Service Request"></oj-c-
input-text>
 <oj-c-input-text label-hint="Product"
value="${jsonObject.product}"></oj-c-input-text>
 <oj-c-input-text label-hint="Issue Type"
value="${jsonObject.sr_type}"></oj-c-input-text>
 <oj-select-single id="prioritySelect" label-hint="Priority"
value="${jsonObject.priority}" class="oj-form-control-max-width-md"></oj-select-single>
 <oj-select-single id="severitySelect" label-hint="Severity"
value="${jsonObject.severity}" class="oj-form-control-max-width-md"></oj-select-single>
<oj-c-text-area label-hint="Summary" rows="3" value="${jsonObject.summary?.substring(0,
100)}"></oj-c-text-area>
 <oj-c-input-text label-hint="First Name"
value="${jsonObject.first_name}"></oj-c-input-text>

20 Email to Service Request: Automating SRs with Siebel AI / Version [1.0]

 Copyright © 2025, Oracle and/or its affiliates / Public

 <oj-c-input-text label-hint="Last Name"
value="${jsonObject.last_name}"></oj-c-input-text>
 <oj-c-input-text label-hint="Contact Email"
value="${jsonObject.email}"></oj-c-input-text>
<oj-c-checkbox label-hint="Acknowledgement Mail" value="true">Acknowledgement Mail</oj-c-
checkbox>
<oj-select-single id="templateSelect" label-hint="Template" value="${apiData.items[0]["Template
Text"]}" class="oj-form-control-max-width-md"></oj-select-single>

 </oj-form-layout>
 `;

 const selectElem =
document.getElementById("prioritySelect");
 if (selectElem) {
 selectElem.data = priorityDP;
 }
 const selectTemp =
document.getElementById("templateSelect");
 if (selectTemp) {
 selectTemp.data = templateDP;
 selectTemp.value = apiData.items[0]["Template Text"]
 }

 const selectSev = document.getElementById("severitySelect");
 if (selectSev) {
 selectSev.data = severityDP;
 }

 } catch (err) {
 content.innerHTML = `<div style="color:red;">Error:
${err.message}</div>`;
 console.error("AI Drawer Error:", err);
 }
 })();
 }
);
 } catch (error) {
 console.error("Error in button logic:", error.message);
 alert("An error occurred: " + error.message);
 }
 }.bind(this));
}
 else {
 console.log("Button control not found.");
 }
 };
 return buttonStylePR;

 }());
 return "SiebelAppFacade.buttonStylePR";
 });
}

21 Email to Service Request: Automating SRs with Siebel AI / Version [1.0]

 Copyright © 2025, Oracle and/or its affiliates / Public

Figure 5. This is the final UI after PR changes

Get Email Insights Button – Business Service

To create a Business Service in Siebel Web Tools, follow these steps:

1. Log in to Siebel Web Tools

2. Navigate to "Business Services"

3. Create a New Business Service

4. Define Methods

• In the Methods tab (or view), click Add.
• Specify the method Name (e.g., “CreateSR”).
• You can create multiple methods as needed.

5. Implement Scripts

• Click on the Business Service you created
• Under settings go to server scripts.
• Under Preinvoke_method add below code

function Service_PreInvokeMethod (MethodName, Inputs, Outputs)

{

 if(MethodName === "InvokeGenericAI"){

 InvokeGenericAI(Inputs, Outputs);

 return (CancelOperation);

22 Email to Service Request: Automating SRs with Siebel AI / Version [1.0]

 Copyright © 2025, Oracle and/or its affiliates / Public

 }if(MethodName === "InvokeAI"){

 InvokeAI(Inputs, Outputs);

 return (CancelOperation);

 } if(MethodName === "extractTextField"){

 extractTextField(Inputs, Outputs);

 return (CancelOperation);

 } if(MethodName === "cleanPrompt"){

 cleanPrompt(Inputs, Outputs);

 return (CancelOperation);

 } if(MethodName === "clip"){

 clip(Inputs, Outputs);

 return (CancelOperation);

 } if(MethodName === "StringTrim"){

 StringTrim(Inputs, Outputs);

 return (CancelOperation);

 }

 if (MethodName == "CreateSR"){

 CreateSR(Inputs, Outputs)

 return (CancelOperation);

 }

 return (ContinueOperation);

}

• Add your script under General → "CreateSR"
•

function CreateSR(Inputs, Outputs) {

 var contactBO = TheApplication().GetBusObject("Contact");

 var contactBC = contactBO.GetBusComp("Contact");

 var contactId;

 var email = Inputs.GetProperty("email");

 var priority = Inputs.GetProperty("priority");

 var product = Inputs.GetProperty("product");

 var abstract1 = Inputs.GetProperty("abstract");

 var srtype = Inputs.GetProperty("srtype");

 var lname1 = Inputs.GetProperty("lname");

 var fname1 = Inputs.GetProperty("fname");

 var emailId = Inputs.GetProperty("actionId");

 var sendackmail = Inputs.GetProperty("ackmail");

 var templatetext = Inputs.GetProperty("templatetext");

 var severity = Inputs.GetProperty("severity");

 var emailSubject;

 var emailBody;

 var emailToLine;

 var creationDate;

23 Email to Service Request: Automating SRs with Siebel AI / Version [1.0]

 Copyright © 2025, Oracle and/or its affiliates / Public

 with (contactBC) {

 ActivateField("Email Address");

 ActivateField("Id");

 ClearToQuery();

 SetSearchSpec("Email Address", email);

 ExecuteQuery(ForwardOnly);

 if (FirstRecord()) {

 contactId = GetFieldValue("Id");

 }

 else {

 // Create new contact

 NewRecord(NewAfter);

 contactBC.SetFieldValue("First Name", fname1);

 contactBC.SetFieldValue("Last Name", lname1);

 contactBC.SetFieldValue("Email Address", email);

 WriteRecord();

 contactId = contactBC.GetFieldValue("Id");

 }

 }

 var SRBO = TheApplication().GetBusObject("Service Request");

 var SRBC = SRBO.GetBusComp("Service Request");

 SRBC.NewRecord(NewAfter);

 SRBC.SetFieldValue("Status", "Open");

 SRBC.SetFieldValue("Abstract", abstract1);

 SRBC.SetFieldValue("Priority", priority);

 //SRBC.SetFieldValue("Description", desc);

 SRBC.SetFieldValue("Contact Id", contactId);

 SRBC.SetFieldValue("Severity", severity);

 SRBC.SetFieldValue("Owner", "");

 SRBC.SetFieldValue("SR Type", srtype);

 SRBC.SetFieldValue("Product", product);

 SRBC.WriteRecord();

 var srid = SRBC.GetFieldValue("Id")

 var srNo = SRBC.GetFieldValue("SR Number")

 var EmailBO = TheApplication().GetBusObject("Action");

 var EmailBC = EmailBO.GetBusComp("Action");

 with (EmailBC) {

 ActivateField("Id");

 ActivateField("SR Number");

 ActivateField("Status");

 ActivateField("Comment");

 ActivateField("Description");

 ActivateField("Email To Line");

 ActivateField("Creation Date");

24 Email to Service Request: Automating SRs with Siebel AI / Version [1.0]

 Copyright © 2025, Oracle and/or its affiliates / Public

 ClearToQuery();

 SetViewMode(AllView);

 SetSearchSpec("Id", emailId);

 ExecuteQuery(ForwardOnly);

 if (FirstRecord()) {

 TheApplication().SetProfileAttr("CSR15","SR Number "+srNo+". Email id
"+emailId);

 emailSubject = EmailBC.GetFieldValue("Description")

 emailBody = EmailBC.GetFieldValue("Comment")

 emailToLine = EmailBC.GetFieldValue("Email To Line")

 creationDate = EmailBC.GetFieldValue("Creation Date")

 EmailBC.SetFieldValue("SR Number", srNo);

 EmailBC.SetFieldValue("Status", "Done");

 EmailBC.WriteRecord();

 }

 }

 if (sendackmail == "Y") {

 var ActionBO = TheApplication().GetBusObject("Action");

 var ActionBC = ActionBO.GetBusComp("Action");

 var promptbody = "Generate a professional acknowledgment email using the
following template.Replace the placeholders and HTML tags in the following template with
the provided values.Please ensure the email is grammatically correct and professionally
written. Template : "+ templatetext+" ; Customer Name: "+fname1+" ; Issue summary -
"+abstract1+" ; SR number : "+srNo;

 var inputPS = TheApplication().NewPropertySet();

 var OutputPS = TheApplication().NewPropertySet();

 inputPS.SetProperty("Prompt", promptbody);

 InvokeGenericAI(inputPS, OutputPS);

 var Retcode = OutputPS.GetProperty("Output");

 TheApplication().SetProfileAttr("CSR11",Retcode);

 var ackMailBody = Retcode+"\r\n\r\n\r\n\r\n-----Original Message-----
\r\n\r\nFrom: "+email+"\r\nSent: "+creationDate+"\r\nTo: "+emailToLine+"\r\nSubject:
"+emailSubject+"\r\n\r\n\r\n"+emailBody;

 ActionBC.NewRecord(NewAfter);

 ActionBC.SetFieldValue("Type", "Email - Outbound");

 ActionBC.SetFieldValue("Description", "Re: "+emailSubject);

 ActionBC.SetFieldValue("Display", "Communication and Activities");

 ActionBC.SetFieldValue("Comment", Retcode);

 ActionBC.SetFieldValue("Email Body", ackMailBody);

 ActionBC.SetFieldValue("SR Number", srNo);

 ActionBC.SetFieldValue("Status", "Draft");

 ActionBC.SetFieldValue("Primary Contact Id", contactId);

 ActionBC.SetFieldValue("Email To Line", email);

 ActionBC.WriteRecord();

 }

Outputs.SetProperty("Status", "done");

25 Email to Service Request: Automating SRs with Siebel AI / Version [1.0]

 Copyright © 2025, Oracle and/or its affiliates / Public

}

o Compile/Activate. Save your changes.If your environment uses automatic deployment, your changes take
effect immediately. Otherwise, follow your deployment procedures.

6. Test the Business Service
Use the Siebel application UI or Siebel COM/CLI/Script Call to test your business service.

Business service Invocation

To invoke this business service from another script do below changes

1. In Siebel Tools, navigate to the "Application" object.

2. Search for "Siebel Universal Agent"

3. Go to "Application User Prop" section

4. Add new user property. Increment value of ClientBusinessServiceXX and give your Business service
name.

Acknowledgement mail
Prompt

Generate a professional acknowledgment email using the following template.Replace the
placeholders and HTML tags in the following template with the provided values.Please ensure the
email is grammatically correct and professionally written. Template : "+ templatetext+" ;
Customer Name: "+fname1+" ; Issue summary - "+abstract1

Code to generate acknowledgment email is added in the business service.

Closure Email
This feature is available out-of-the-box. Please go through Siebel bookshelf -
https://docs.oracle.com/cd/G30556_01/books/AppsAdmin/c-Use-Case-2-Generate-Transfer-and-Closing-
Summary.html - to know more about this feature.

Traceability

All sent emails should be logged in the CRM system against the customer’s complaint record for full traceability

Siebel Email Response supports saving outbound emails in Siebel application. The email content, including
attachments, is associated with a Siebel activity record that tracks the send operation (out-of-the-box)

26 Email to Service Request: Automating SRs with Siebel AI / Version [1.0]

 Copyright © 2025, Oracle and/or its affiliates / Public

Connect with us

Call +1.800.ORACLE1 or visit oracle.com. Outside North America, find your local office at: oracle.com/contact.

 blogs.oracle.com facebook.com/oracle twitter.com/oracle

Copyright © 2025, Oracle and/or its affiliates. This document is provided for information purposes only, and the contents hereof are subject to change without notice. This document
is not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of
merchantability or fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are formed either directly or
indirectly by this document. This document may not be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without our prior written
permission.

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

